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A modified eighth-order Landau potential was proposed for the BaTiO3 single crystal by taking
account into the quantum mechanical effects at low temperature. While all existing thermodynamic
potentials for BaTiO3 fail to accurately describe the pressure dependence of ferroelectric transition
temperatures, the temperature and hydrostatic pressure phase diagram constructed using the
modified potential shows excellent agreement with experimental measurements by Ishidate, Abe,
Takahashi, and Mori �Phys. Rev. Lett. 78, 2397 �1997��. On the basis of the new proposed Landau
potential, we calculated the dielectric coefficients, spontaneous polarizations, temperature-electric
field phase diagram, and piezoelectric coefficients, all in good agreement well with existing
experimental data. © 2010 American Institute of Physics. �doi:10.1063/1.3504194�

I. INTRODUCTION

As a classic ferroelectric, the thermodynamics of
BaTiO3 is the most extensively studied over half a
century1–7since Devonshire wrote down a sixth-order classic
Landau potential to describe the thermodynamics of phase
transitions in BaTiO3.1 Bell and Cross reported a set of sixth-
order Landau polynomial potential coefficients by assuming
three of them temperature-dependent. Li, et al.,7 proposed an
eighth-order Landau potential for predicting the phase tran-
sitions, domain structures, and other properties of BaTiO3 for
both thin films and bulk crystals.7–11 Finally, Wang, et al.,12

proposed another eighth-order Landau potential by arguing
that the second and higher-order coefficients should be
temperature-dependent to describe adequately the thermody-
namic behavior of BaTiO3. The classical Landau potentials
have been reasonably successful in describing the phase tran-
sitions and ferroelectric properties of BaTiO3 above the so-
called saturation temperature above which the quantum me-
chanical effects can be neglected.13

The phase transitions and properties of a ferroelectric
can be modified by external fields such as biaxial or unixal
stress, hydrostatic pressure, or electric field. The focus of this
work is on the pressure dependence of transition tempera-
ture, represented by the pressure-temperature phase diagram.
Both first principle studies and experimental measurement
showed that the phase transitions of bulk BaTiO3 from
paraelectric phase to ferroelectric phase and from the parallel
phase to ferroelectric phase should be first-order,14–17 thus
the phase boundaries can be discussed using the Clapeyron
equation. On a pressure-temperature phase diagram, the pres-
sure dependence of a transition temperature is described by
the Clapeyron relation, dp /dT=L /T�V=�S /�V, where
dp /dT is the slope of the two-phase coexistence curve, L the
latent heat, �S the entropy change, T the transition tempera-
ture, �V the volume change. In the classical limit, �S is
approximately proportional to �V, hence the pressure depen-

dence of transition temperature is also approximately
linear.18,19 However, at low temperature near 0 K, the quan-
tum theory predicts: TC�p�� �pC− p�1/2, where TC is the tran-
sition temperature, p is the hydrostatic pressure and pC is its
value at TC=0 K.19–21 Therefore, in order to accurately de-
scribe the dependence of the transition temperatures on ex-
ternal fields including those below the saturation tempera-
ture, the effect of quantum fluctuation such as zero-point
vibration on vibrational mode of the lattice should be con-
sidered.

The dielectric constants, polarizations, and phase transi-
tions under hydrostatic pressure were experimentally studied
by Samara et al. in 1966,22 Decker and Zhao in 1989,23 and
Ishidate et al. in 1997.24 Samara et al. considered hydrostatic
pressures up to 2.5GPa. It was shown that the transition tem-
perature decreases with hydrostatic pressure and a triple
point was obtained by classical extrapolation.22 A similar
measurement was performed by Decker et al. for hydrostatic
pressure up to 3.8 GPa. They showed that the cubic to tetrag-
onal ferroelectric phase transition in BaTiO3 under hydro-
static pressure was displacive and became less discontinuous
as pressure was increased until a triple point was reached at
about 3.5GPa and −40 °C. Furthermore, it was demonstrated
that the peak values for the dielectric constants increased
with hydrostatic pressure. A more recent and thorough mea-
surement was conducted by Ishidate et al. determined the
BaTiO3 temperature-pressure phase diagram for pressures up
to 10 GPa and temperatures down to 4 K, resulting in a
relatively complete pressure-temperature phase diagram in-
cluding both the classical limit above the saturation tempera-
ture and the quantum limit below the saturation temperature.
They also obtained three critical pressures of 5.4, 6.0, and
6.5 GPa at which the rhombohedral, orthorhombic, or tetrag-
onal phase disappears, respectively, over the whole tempera-
ture range. The pressure-temperature phase diagram obtained
by Zhong et al.15 using first principle calculations, although
there are quantitative differences, qualitatively agrees with
Ishidate’s experimentally measured phase diagram. Jorge et
al. recalculated the pressure-temperature phase diagram ofa�Electronic mail: xqma@sas.ustb.edu.cn.
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BaTiO3 by considering the zero-point motion of ions and
using theoretically perfect hydrostatic pressure. The recalcu-
lated phase diagram by first principles corroborated Ishi-
date’s experimental results.25

To correctly describe the phase transitions at low tem-
peratures using a phenomenological description, Salje et al.
included the quantum mechanical effects in the classical
Landau potential.4–6,13,18 For example, Salje et al. employed
a modified Landau-type expression for the Gibbs energy by
including the saturation effects of order parameter to de-
scribe the variation in the order parameter with temperature
for As2O5, LaAlO3, CaCO3, NaNO3, Pb3�PO4�2, etc.13 and
the obtained results were in excellent agreement with experi-
mental measurements. Salje et al. also computed the
temperature-pressure or temperature-composition phase dia-
grams for SrTiO3, KH2PO4, KTaO3, and SbSI using Landau
theory with quantum effects.18 Hayward et al. determined the
pressure-temperature phase diagram of BaTiO3 based on the
Landau description proposed by Salje et al.6 However, due to
the complexity of multiple phase transitions in BaTiO3, their
model was not able to predict the orthorhombic to rhombo-
hedral phase transition. There has also been no systematic
theoretical study on the physical properties of BaTiO3 under
a hydrostatic pressure.6 Therefore, the main objective of this
work is to analyze the effect of hydrostatic pressure on ferro-
electric phase transitions as well as ferroelectric properties in
BaTiO3. For this purpose, we modified the eighth-order ther-
modynamic potential for BaTiO3 by connecting the classical
and quantum limits following the work of Salje et al.7

The paper is organized as follows. In Sec. II, we describe
the modified Landau potential and the determination of the
coefficients. In Sec. III, a temperature-pressure phase dia-
gram is constructed based on the new Landau potential co-
efficients. We compared the predicted results with those ob-
tained by experiments as well as with those obtained using
the classical Landau potential without including the quantum
effects. In Sec. IV, the dielectric constants under a hydro-
static pressure are calculated and are compared with existing
experimental data. In Sec. V, the phase transitions under an
electric field along �001�, �101�, and �111� directions are
studied. In Sec. VI, the electric field induced strains and
piezoelectric coefficients are discussed. Finally, we summa-
rize the results in Sec. VII.

II. LANDAU THERMODYNAMIC POTENTIAL

Taking the cubic paraelectric phase as the reference, the
Gibbs free energy as a function of polarization under stress
can be expressed as

�G = fLGD −
1

2
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where Pi is the ith component of polarization, �i ith compo-
nent of applied stress in Voigt notation, s11, s12, and s44 the
elastic compliance constants of cubic phase, and Q11, Q12,
and Q44 the corresponding electrostrictive coefficients.

All the Landau potential coefficients in Eq. �2� are as-
sumed to be temperature-independent except �1. The TS in-
cluded in �1 is named the saturation temperature below
which the quantum mechanical effects are significant. We
use the same saturation temperature �160 K� as in Salje et
al.’s work.6 The main difference from the existing eighth-
order Landau potential7 is the fact that �11, �12, �111, �112,
and �123 in the modified potential are dependent on the ap-
plied stress �see Table I for the specific dependencies�. The
stress dependences of �11, �12, �111, �112, and �123 represent
the higher-order electrostrictive coupling between stress and
polarization. Such high-order electrostrictive coupling was
discussed as early as in the 1950s on the electric field in-
duced strains �=bE2+dE4+ fE6+¯.26 Although the first
term is sufficient for most purposes, the higher-order anhar-
monic terms are necessary in order to account for the thermal
expansion. In the case of cubic BaTiO3, for instance, the
departure of the oxygen potential wells from being truly har-
monic is one of the important features of the theory, ex-
plained by Devonshire and Slater.1,27Furthermore, the pres-
ence of higher-order terms is also used to explain the
experimentally observed temperature dependence of the di-
electric susceptibility.26 Similarly, one can also write the gen-
eral polarization dependence of strain through, �=bP2

+dP4+ fP6+ . . .. Under high hydrostatic pressure, the higher-
order coupling between stress and polarization is required to
account for the accurate pressure-temperature phase diagram.

The coefficients obtained in this work along with those
from a number of previous works are shown in Table I. It
should be noted that the existing thermodynamic potentials
were obtained by fitting the coefficients to the properties of
BaTiO3 under zero pressure. Therefore, the existing coeffi-
cients may not be applicable for describing properties under
hydrostatic pressure. In this work, �11, �111, and �1111 were
obtained using the properties of the tetragonal phase under
pressure, including the cubic to tetragonal transition tem-
perature, and the spontaneous polarization and the dielectric
constants of the tetragonal phase. Similarly, �12, �112, �1122,
and �1112 were fitted to the properties of the orthorhombic
phase, and �123 and �1123 to the properties of the rhomobhe-
dral phase. While �1 is assumed to be linearly dependent on
temperature in the classical approximation,1,3,7 �1 is assumed
to be a hyperbolic cotangent function of temperature to in-
clude quantum effects as it was proposed by Salje et al.6,13,18
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Since only the second-order coefficient in the Landau
free energy is temperature-dependent, the entropy change for
a phase transition at the transition temperature can be ob-
tained from �S= �Pproduct

2 �TC�− Pparent
2 �TC�� /2�0C, where �0

is the permittivity of vacuum and C is the Curie–Weiss
constant.28 Therefore, the entropy changes obtained in our
work are 13 361 J m−3 K−1 for cubic to tetragonal phase
transition, 9237 J m−3 K−1 for tetragonal to orthorhombic,
and 5531 J m−3 K−1 for orthorhombic to rhombohedral. For
comparison, the entropy changes in Li et al.’s work are
13 535 J m−3 K−1, 6640 J m−3 K−1, and 6971 J m−3 K−1,
respectively.7 These values are in general agreement with
experimental values listed in Ref. 28: 13 098–13 644, 5898–
9940, and 4357–7624 J m−3 K−1.28

III. TEMPERATURE-PRESSURE PHASE DIAGRAM

Under a hydrostatic pressure, the applied stress tensors
satisfy �1=�2=�3=−p, �4=�5=�6=0, and Eq. �1� becomes

�G = fLGD − �3

2
s11 + 3s12�p2 + p�Q11 + 2Q12�

��P1
2 + P2

2 + P3
2� . �3�

The variation in polarization with temperature and pressure
was obtained and shown in Figs. 1�a� and 1�b�. Each phase
transition can easily be identified in Fig. 1 based on the
jumps in polarization values. Application of a hydrostatic
pressure decreases polarization at a given temperature. As
the hydrostatic pressure increases, the rhomobohedral phase
disappears first at its critical pressure, followed by the disap-
pearance of the orthorhombic phase at 5.8 GPa, and finally,
the tetragonal phase at about 6.4 GPa.

With the coefficients listed in Table I, a temperature-
pressure phase diagram was constructed and shown in Fig. 2.
We also included the experimental data from Ishidate’s
work24 and theoretical results calculated by using classical
Landau coefficients of Li et al. It can be seen from Fig. 2 that

the classical Landau potential coefficients of Li et al. pro-
duced linear dependence of transition temperatures on the
hydrostatic pressure for all three phase transitions, rhombo-
hedral to orthorhombic, orthorhombic to tetragonal, and te-
tragonal to cubic. While the transition temperatures obtained
using the classical Landau potential coefficients of Li et al.
show good agreements with experimentally measured values
above the saturation temperature, their linear dependence on

TABLE I. Coefficients of Landau potential in Eq. �2�, where T is temperature in kelvin, TS is the saturation temperature below which the quantum mechanical
effects are not ignorable, and �1, �2, and �3 are stress along x, y, and z direction in unit of gigapascal.

Coefficients This Work Bell and Cross Li et al. Wang et al. Units

�1 5.0 � 105 � TS

��Coth�TS

T
� − Coth� TS

390
�	

3.34�105

��T−381�
4.124�105

��T−388�
3.61�105

��T−391�
V m C−1

�11

−1.154�108

��1+0.037��1+�2+�3��
4.69�106��T−393�

−2.02�108 −2.097�108
�1.83�109
+4.0�106T V m5 C−3

�12

6.530�108

��1+0.037��1+�2+�3�� 3.230�108 7.974�108
�2.24�109
+6.7�106T V m5 C−3

�111

−2.106�109

��1+0.023��1+�2+�3��
�5.52�107��T−393�

+2.76�109 1.294�109
1.39�1010
−3.2�107T V m9 C−5

�112

4.091�109

��1+0.023��1+�2+�3�� 4.470�109 −1.950�109 −2.2�109 V m9 C−5

�123

−6.688�109

��1+0.023��1+�2+�3�� 4.910�109 −2.500�109 5.51�1010 V m9 C−5

�1111 7.590�1010 0.0 3.863�1010 4.84�1010 V m13 C−7

�1112 −2.193�1010 0.0 2.529�1010 2.53�1011 V m13 C−7

�1122 −2.221�1010 0.0 1.637�1010 2.80�1011 V m13 C−7

�1123 2.416�1010 0.0 1.367�1010 9.35�1010 V m13 C−7

FIG. 1. �Color online� �a�. Polarization of BaTiO3 vs temperature under
different hydrostatic pressures. �b�. Polarization of BaTiO3 vs hydrostatic
pressure at different temperatures.
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pressure is inconsistent with experiments at low tempera-
tures. On the other hand, the phase boundaries obtained by
the new Landau coefficients agree well with experimental
measurements over the entire temperature range. It should be
pointed out that above the saturation temperature TS, the
slope of the phase boundary between the cubic and tetrago-
nal phases is mainly decided by the electrostrictive coeffi-
cients �Q11+2Q12�. In this work, we used Q11=0.11, Q12

=−0.045, and Q44=0.029.28,29 However, the higher-order
couplings between stress and polarization have a significant
effect on the phase transitions at lower temperatures, i.e., on
both the orthorhombic/tetragonal and rhombohedral/
orthorhombic phase boundaries.

Using the new coefficients, the zero pressure transition
temperatures from cubic to tetragonal, tetragonal to ortho-
rhombic, and orthorhombic to rhombohedral phase are 396
K, 280 K, and 207 K, respectively, which are consistent with
existing experimental data.30–34 The critical pressures for te-
tragonal, orthorhombic, and rhomobohedral phases are 5.1,
5.8, and 6.4, which also agree well with experimental values
of 5.4 GPa, 6.0 GPa and 6.5 GPa, respectively.24 The slopes
for the cubic/tetragonal, tetragonal/orthorhombic, and
orthorhombic/rhombohedral phase boundaries above the
saturation temperature 160 K are �45 K/GPa, �28 K/GPa,
and �18 K/GPa, respectively.

The modified Landau potential was obtained according
to the ferroelectric properties of bulk BaTiO3 at zero stress.
In order to study the phase transitions of BaTiO3 thin films
under equally biaxial or nonequally biaxial in-plane misfit
strains,35–37 One can use a Legendre transformation to trans-
form the Gibbs-free energy as a function of stress into the
Helmholtz free energy as a function of strain. The
Helmholtz-free energy can be used to study the phase tran-
sitions of thin films and nanowires under strained boundary
conditions. In this work, we focus on the properties of bulk
BaTiO3, and the phase transitions for BaTiO3 nanowires un-
der different mechanical boundary conditions will be dis-
cussed in next paper.

IV. DIELECTRIC CONSTANTS UNDER PRESSURE

Dielectric constant is one of the most important proper-
ties for a ferroelectric, e.g., for capacitor applications. We
calculated dielectric constants under hydrostatic pressure us-
ing the modified thermodynamic potential. We focused on
the dielectric constants �c along the polar directions, namely,
the �001� direction for the tetragonal phase, the �011� direc-
tion for the orthorhombic phase, and the �111� direction for
the rhombohedral phase. The relative dielectric stiffnesses 	ij

are deduced from the second-order derivatives of the free
energy function with respect to polarization,

	ij = �0
�2�G

�Pi � Pj
, �4�

In the cubic phase, P1= P2= P3=0,

	11 = 	22 = 	33 = 2�0��1 + pQ11 + 2pQ12� , �5�

	12 = 	13 = 	23 = 0. �6�

In the tetragonal phase, P1= P2=0, P3�0,

	11 = 	22 = 2�0��1 + pQ11 + 2pQ12 + �12P3
2 + �112P3

4

+ �1112P3
6� , �7�

	33 = 2�0��1 + pQ11 + 2pQ12 + 6�12P3
2 + 15�111P3

4

+ 28�1111P3
6� , �8�

	12 = 	13 = 	23 = 0. �9�

In the orthorhombic phase, P1=0, P2= P3�0,

	11 = 2�0��1 + pQ11 + 2pQ12 + 2�12P3
2 + 2�112P3

4

+ �123P3
4 + 2�1112P3

6 + 2�1123P3
6� , �10�

	22 = 	33 = 2�0��1 + pQ11 + 2pQ12 + 6�11P3
2 + 15�111P3

4

+ 28�1111P3
6 + �12P3

2 + 7�112P3
4 + 16�1112P3

6

+ 6�1122P3
6� , �11�

	23 = 2�0�2�12P3
2 + 8�112P3

4 + 12�1112P3
6 + 8�1122P3

2� ,

�12�

	12 = 	13 = 0. �13�

In the rhombohedral phase, P1= P2= P3�0,

	11 = 	22 = 	33 = 2�0��1 + pQ11 + 2pQ12 + 6�11P3
2

+ 15�111P3
4 + 28�1111P3

6 + �12P3
2 + 14�112P3

4

+ �123P3
4 + 32�1112P3

6 + 12�1122P3
6 + 8�1123P3

6� ,

�14�

	12 = 	13 = 	23 = 2�0�2�12P3
2 + 8�112P3

4 + 2�123P3
4

+ 12�1112P3
6 + 8�1122P3

6 + 10�1123P3
6� . �15�

We make a coordinate transformation for each phase such
that the polar direction is always along the �001� direction.
The dielectric constant along the polar direction, �c, and that

FIG. 2. �Color online� Temperature-pressure phase diagram of BaTiO3. The
blue square, circle, and triangle indicate experimentally measured cubic-
tetragonal phase boundary, tetragonal-orthorhombic phase boundary, and
orthorhombic-rhombohedral phase boundary. The cyan solid line, dotted
line, and dashed line indicate the cubic-tetragonal phase boundary,
tetragonal-orthorhombic phase boundary, and orthorhombic-rhombohedral
phase boundary calculated from classical Landau coefficients calculated.
The red solid line, dotted line, and dashed line indicate phase boundaries
obtained by this work.
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perpendicular to the polar direction, �a, are given by
In the cubic phase,

�a = �c =
1

	33
. �16�

In the tetragonal phase,

�a =
1

	11
, �c =

1

	33
. �17�

In the orthorhombic phase,

�a =
1

	11
, �c =

1

	23 + 	33
. �18�

In the rhombohedral phase,

�a =
1

	11 − 	12
, �c =

1

	11 + 2	12
. �19�

Figure 3 shows the variation in dielectric constants �c

with temperature under different hydrostatic pressures. The
results agree well with the experimental measurements of
Decker and Zhao.23 The dielectric constant displays peaks at
each transition temperature. It is shown that the height of a
peak increases with pressure, i.e., applied pressure enhances
the dielectric response of a dielectric. It should be empha-
sized that the high-order electrostrictive couplings, i.e., the
fourth- and sixth-order couplings between polarization and
stress, are critical for the increase in the dielectric constant
peaks with hydrostatic pressure.

Additional comparisons between theory and experimen-
tal on the temperature-dependent dielectric constants, �a and
�c are plotted in Fig. 4.38 It is shown that �c values show
much better agreement with experiments than those of �a

although our theoretical results for �a qualitatively agrees
with the experimental data. However, it is noted that there
are significant differences among measured values for �a

from different sources. For example, in Merz’s experiment,
�a :�c is about 20:1 while in Mason and Matthias’s experi-
ment, the ratio is as high as 500:1.38,39 Therefore, more ac-
curate experimental measurements are needed for a more re-
liable comparison between theory and experiments for �a.

V. TEMPERATURE-ELECTRIC FIELD PHASE
DIAGRAM UNDER PRESSURE

The phase transitions in BaTiO3 under an electric field in
the stress-free condition were investigated by several groups
for domain engineering and for understanding the role of
electric field in phase transition of ferroelectrics.7,40–44 With
the presence of an applied external electric field, the Gibbs-
free energy is rewritten as

�G = fLGD −
1

2
s11��1

2 + �2
2 + �3

2� − s12��1�2 + �1�3

+ �2�3� −
1

2
s44��4

2 + �5
2 + �6

2� − Q11��1P1
2 + �2P2

2

+ �3P3
2� − Q12��1�P2

2 + P3
2� + �2�P1

2 + P3
2� + �3�P2

2

+ P1
2�� − Q44��4P2P3 + �5P1P3 + �6P2P1� − �E1P1

+ E2P2 + E3P3� . �20�

Here, we consider electric fields along �001�, �101�, and
�111� directions. Based on Eq. �20�, the temperature versus
electric fiend phase diagrams are constructed. These phase
diagrams are shown in Fig. 5 in �a�, �b�, and �c� for the
electric field along �001�, �010�, or �111� direction, respec-
tively. Because of the lack of experimental data, only phase
transition under an electric field along the �001� direction is
considered for comparison with experiment. With an applied
field along �001� direction, BaTiO3 undergoes a phase tran-
sition from the tetragonal phase to the first type of mono-
clinic phase labeled as M1, and then another from the M1

phase to the distorted rhombohedral phase M2.45It can be
seen that the phase boundaries calculated in this work agree
well with Fesenko et al.’s experiment measurement.

VI. STRAINS AND PIEZOELECTRIC COEFFICIENTS
UNDER ELECTRIC FIELD

The strains under hydrostatic pressure can be derived
from Eq. �20� by using the first-order derivatives of the
Gibbs-free energy with respect to stress,

FIG. 3. �Color online� Dielectric constants �c of BaTiO3 single crystal ver-
sus temperature at different hydrostatic pressures, compared with Decker et
al.’s experimental measurement result.

FIG. 4. �Color online� Dielectric constants �a and �c of BaTiO3 single
crystal vs temperature at zero hydrostatic pressures, compared with Merz’s
experimental measurement from 90 to 400 K. �c is the dielectric constant
along the polar direction, which is along �001� direction in tetragonal phase,
�011� direction in orthorhombic phase, and �111� direction in rhombohedral
phase. In our work �a is along �100� direction in tetragonal and orthorhom-

bic phase, along �11̄0� in rhombohedral phase.
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e1 = − 
 � fLGD

��1



�1=�2=�3=−p

+ Q11P1
2 + Q12�P2

2 + P3
2�

− s11p − 2s12p , �21�

e2 = − 
 � fLGD

��1



�1=�2=�3=−p

+ Q11P2
2 + Q12�P1

2 + P3
2�

− s11p − 2s12p , �22�

e3 = − 
 � fLGD

��1



�1=�2=�3=−p

+ Q11P3
2 + Q12�P2

2 + P1
2�

− s11p − 2s12p , �23�

e4 = Q44P2P3, �24�

e5 = Q44P1P3, �25�

e6 = Q44P2P1, �26�

where only e1, e2, and e3 are pressure-dependent. We em-
ployed the elastic compliance constants s11 and s12, 9.07
�10−12 and −3.186�10−12 m2 /N, from Devonshire’s
work.1

Since some of the Landau potential coefficients are
stress-dependent, the first term in e1, e2, and e3 are the first
derivative of Landau energy in Eq. �2� with respect to stress
under a hydrostatic pressure condition. The strain variations
with temperature under different hydrostatic pressures are
shown in Fig. 6 where the normal strains e1, e2, and e3 are
plotted. The different colors in Fig. 6 indicate strain varia-
tions under different pressures, pink: zero hydrostatic pres-
sure, dark: 2 GPa, and blue: 4 GPa. For each pressure, there
are four stages, indicating the four phases of BaTiO3: cubic:
e1=e2=e3, tetragonal: e1=e2�e3, orthorhombic: e1�e2=e3,
and rhombohedral phase: e1=e2=e3. It can be seen from Fig.
6 that the strain curves are shifted to low left as hydrostatic
pressure increases as a result of decrease in transition tem-
peratures and strains under pressure.

A number of recent studies demonstrated that the piezo-
electricity of BaTiO3 could be enhanced by applying an elec-
tric field.41,42,46–48 For example, Wada et al.’s experiment
showed that with an electric field over 6 kV/cm along �111�
direction, two continuous changes were observed in the
strain-field curve, indicating the discontinuities in the piezo-
electric coefficients under electric field along �111� direction.

Theoretically, the piezoelectric coefficients can be calcu-
lated from the first-order derivative of strains with respect to
electric field. The strain e�lmn� along any arbitrary direction
with respect to the pseudocubic cell can be calculated
through the following expression:

e�lmn� = e1l2 + e2m2 + e3n2 + 2e4mn + 2e5ln + 2e6lm , �27�

where e1, e2, e3, e4, e5, and e6 are obtained from Eqs.
�21�–�26�, and l ,m ,n are directional cosines that satisfy l2

+m2+n2=1.49

FIG. 5. �Color online� Phase transitions of BaTiO3 single crystal under
electric field along �001�, �101�, and �111� directions at stress-free condition.
�a� Temperature-E�001� phase diagram, the squares of navy color indicate
experimental data. �b� Temperature-E�101� phase diagram. �c� Temperature-
E�111� phase diagram.

FIG. 6. �Color online� Elastic strains of BaTiO3 single crystal under hydro-
static pressure of 0.0, 2.0, and 4.0 GPa. Counting from the right of the
curves, the first stage is cubic phase where the strain components satisfy
e1=e2=e3, the second stage is tetragonal phase where the strain components
satisfy e1=e2�e3, the third stage is orthorhombic phase where the strain
components satisfy e1�e2=e3 and the last stage is rhombohedral phase
where the strain components satisfy e1=e2=e3.
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We consider an electric field along �001�, �101�, or �111�
directions. Piezoelectric coefficients were calculated along
the field direction and other two orthogonal directions.
Therefore, for the case of �001� direction, the three orthogo-
nal directions are along �001�, �010�, and �100�; for �101�
direction, they are �101�, �101̄�, and �010�; for �111� direc-

tion, they are �111�, �112̄�, and �11̄0�. Figure 7 shows the
piezoelectric coefficients d31, d32, and d33. From Fig. 7 it can
be seen that there are indeed two discontinuities for d33, d32,
and d31 with the electric field along �111� direction, and one
discontinuity for d33, d32, and d31 with the electric field along
�101� direction, and all the discontinuities appear at the criti-
cal electric fields where a phase transition takes place. Our
calculated d33 under zero pressure and room temperature
agrees well with the measured value by Wada et al. indicated
by two pentagons of navy blue color.41 Finally, there is no
discontinuity for piezoelectric coefficients at room tempera-

ture by applying electric field along the �001� direction,
which is consistent with the fact that there is no ferroelectric
phase transition in this case.

VII. SUMMARY

A modified eighth-order Landau potential was proposed
by introducing high-order electrocoupling effects and incor-
porating the quantum mechanical effects at low temperature
for a single crystal BaTiO3. It leads to a temperature-pressure
phase diagram that reproduces experimental results over the
whole temperature range, overcoming the short-comings of
all existing thermodynamic potentials for BaTiO3. The spon-
taneous polarization, dielectric constants, temperature-
electric field phase diagram, and piezoelectric coefficients
obtained using the new Landau coefficients all agree very
well with existing experimental measurements.
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